Notes on Selected topics to accompany Sakurai's
 "Modern Quantum Mechanics"

Raghunathan Ramakrishnan
ramakrishnan@tifrh.res.in

Prepared for the course QMi for Physicists at
Tata Institute of Fundamental Research Hyderabad Hyderabad 500046, India

Wien's displacement law

Wien's displacement law is an empirical law given by

$$
\lambda_{\max } T \approx 2.9 \times 10^{-3} m K
$$

This law can be derived from the Planck's law of radiation. Let us start with

$$
u(\lambda, T)=\frac{8 \pi h c}{\lambda^{5}} \frac{1}{e^{h c / \lambda k_{\mathrm{B}} T}-1}
$$

The wavelength corresponding to maximum energy density is obtained by solving the equation

$$
\begin{aligned}
\frac{d u(\lambda, T)}{d \lambda} & =0 \\
\Rightarrow \frac{d}{d \lambda}\left(\frac{8 \pi h c}{\lambda^{5}} \frac{1}{e^{h c / \lambda k_{\mathrm{B}} T}-1}\right) & =0 \\
\Rightarrow 8 \pi h c \frac{d}{d \lambda}\left(\frac{1}{\lambda^{5}} \frac{1}{e^{h c / \lambda k_{\mathrm{B}} T}-1}\right) & =0 \\
\Rightarrow\left[\frac{1}{\lambda^{5}}\left\{-\frac{1}{\left(e^{h c / \lambda k_{\mathrm{B}} T}-1\right)^{2}} e^{h c / \lambda k_{\mathrm{B}} T}\left(-\frac{h c}{\lambda^{2} k_{\mathrm{B}} T}\right)\right\}+\frac{1}{e^{h c / \lambda k_{\mathrm{B}} T}-1}\left(-\frac{5}{\lambda^{6}}\right)\right] & =0 \\
\Rightarrow\left[\frac{h c}{\lambda^{7} k_{\mathrm{B}} T} \frac{e^{h c / \lambda k_{\mathrm{B}} T}}{\left(e^{h c / \lambda k_{\mathrm{B}} T}-1\right)^{2}}-\left(\frac{5}{\lambda^{6}}\right) \frac{1}{e^{h c / \lambda k_{\mathrm{B}} T}-1}\right] & =0 \\
\Rightarrow \frac{h c}{\lambda k_{\mathrm{B}} T} \frac{e^{h c / \lambda k_{\mathrm{B}} T}}{e^{h c / \lambda k_{\mathrm{B}} T}-1}-5 & =0
\end{aligned}
$$

We can substitute the variable

$$
x=\frac{h c}{\lambda k_{\mathrm{B}} T}
$$

to get

$$
\begin{aligned}
x \frac{e^{x}}{e^{x}-1}-5 & =0 \\
\Rightarrow x e^{x}-5 e^{x}+5 & =0
\end{aligned}
$$

which is a transcendental equation. In the following, we will see how to solve this equation

1. graphically
2. numerically, and
3. analytically using the Lambert-W technique

Graphical Solution

A first approximation for the solution of $x e^{x}-5 e^{x}+5=0$ can be obtained by simply listing the values of the function $f(x)=x e^{x}-$ $5 e^{x}+5$ for various values of x.

x	$f(x)$
-5.00	4.93
-4.00	4.84
-3.00	4.60
-2.00	4.05
-1.00	2.79
0.00	0.00
1.00	-5.87
2.00	-17.17
3.00	-35.17
4.00	-49.60
5.00	5.00

From Table团one notes a trivial solution of $x=0$ at which $f(x)=0$ and a non-trivial solution in the range 4 to 5 where $f(x)$ changes sign. A more accurate value of the solution can be estimated graphically as shown in Fig. 团where one clearly notes that $f(5) \approx 0$.

Method of Iteration

In the method of iteration, an equation is rearranged to the form $x=f(x)$. Starting with an initial value x_{0} a better approximation of the solution x_{1} is given by $f\left(x_{0}\right)$.

$$
x_{i+1}=f\left(x_{i}\right) .
$$

The equation to be solved is

$$
\begin{aligned}
e^{x}(x-5)+5 & =0 \\
\Rightarrow e^{x}(x-5) & =-5 \\
\Rightarrow(x-5) & =-5 e^{-x} \\
\Rightarrow x & =5+-5 e^{-x}=f(x) .
\end{aligned}
$$

We can start with the initial guess $x_{0}=4.0$, and compute the exact root in a few iterations. The convergence towards the exact root of $x=4.965$ is shown the following table.

iter.	x_{i}	$x_{i+1}=f\left(x_{i}\right)$
0	4.00000000	4.90842181
1	4.90842181	4.96307934
2	4.96307934	4.96504317
3	4.96504317	4.96511175
4	4.96511175	4.96511415
5	4.96511415	4.96511423
6	4.96511423	4.96511423

Analytic solution using the Lambert W function
The solution of the transcendental equation $Y=X e^{X}$ can be written as the Lambert W function

$$
X=W(Y)=\sum_{i=1}^{\infty} \frac{(-1)^{i-1} i^{i-2}}{(i-1)!} Y^{i} .
$$

For the first few terms, the series is given by

$$
W(Y)=Y-Y^{2}+\frac{3}{2} Y^{3}-\frac{8}{3} Y^{4} \ldots
$$

If $|Y| \geq 0.34$, the series oscillates between large positive and negative values. Now we have to rearrange the original equation to be solved to arrive at the form $Y=X e^{X}$.

$$
\begin{aligned}
(x-5) e^{x}+5 & =0 \\
\Rightarrow(x-5) e^{x} & =-5 \\
\Rightarrow(x-5) e^{(x-5)} & =-5 e^{-5} \\
\Rightarrow X e^{X} & =Y
\end{aligned}
$$

Table 2: Iterative solution
of $x e^{x}-5 e^{x}+5=0$ or $x=5+-5 e^{-x}$.

From which we get

$$
\begin{aligned}
x-5 & =W\left(-5 e^{-5}\right) \\
x & =W\left(-5 e^{-5}\right)+5
\end{aligned}
$$

i	x
1	4.96631027
2	4.96517527
3	4.96511791
4	4.96511447
5	4.96511425
6	4.96511423
7	4.96511423

Table 3: Analytic solution of $x e^{x}-5 e^{x}+5=0$ using Lambert W Function.

The value of $|Y|$ here is 0.033690 . So the Lambert series will not oscillate and will converge monotonously to the exact root. The convergence as a function of number of terms in the Lambert series is shown in the following table. From Table 3 one notes that an accuracy up to 3 decimal places can be reached using the simple approximate expression of $W(x)=x-x^{2}$ where $x=-5 e^{-5}$

$$
\begin{aligned}
x & \approx W^{\text {first two terms }}\left(-5 e^{-5}\right)+5 \\
& =\left(-5 e^{-5}\right)-\left(-5 e^{-5}\right)^{2}+5 \\
& =4.96517527
\end{aligned}
$$

