
Notes on Selected topics to accompany Sakurai’s
“Modern Quantum Mechanics”
Raghunathan Ramakrishnan
ramakrishnan@tifrh.res.in

Prepared for the course QM1 for Physicists at
Tata Institute of Fundamental Research Hyderabad Hyderabad
500046, India

Paradoxes of a classical electron

According to classical physics, electric current flowing through a
circular loop produces a magnetic moment, µ⃗mag. This quantity is
directly proportional to an orbital angular momentum due to the
circular motion of the charged particles.

µ⃗mag =
q

2m
L⃗orb, (1)

where q is the total charge, and m is the total mass of all charged
particles moving in the loop. The ratio |⃗µmag|/|⃗Lorb| = q/(2m) is the
gyromagnetic ratio, denoted by γ.

In classical physics, for any object which has the same charge
density as mass density, the value of γ is q/(2m). For example,
this relation is valid for a spherical shell of charge (q) and mass (m)
uniformly distributed on the surface. In this case, the densities are
ρcharge = q/(4πr2) and ρmass = m/(4πr2). Similarly, this relation is
also valid for a solid sphere with uniform charge and mass density.
For this case, we have ρcharge = 3q/(4πr3) and ρmass = 3m/(4πr3). In
the following, we will see that

1. the spin angular momentum, s⃗, (we will use small letter s for a
single particle and captial letter S for many particles) of an elec-
tron cannot be understood as angular momentum arising from
rotational motion of a charged object.

2. the gyromagnetic ratio of an electron (more specifically, its g-
factor) cannot be understood as a deviation in its charge and mass
densities. We cannot think of the charge of an electron to be uni-
formly distributed in a spherical shell or a solid sphere.

We will see that both assumptions can result in paradoxes.
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What will be the radius of an electron if it is a uniformly charged classi-
cal spherical shell?

Let us imagine a classical electron to be a spherical shell (i.e. a hol-
low sphere) with radius re and a total charge of q = −e uniformly
distributed on its surface. The charge density is ρ = q/(4πr2

e ). The
potential energy (V) of this system arises entirely from electrostatis-
tics. This energy is defined as the work done in bringing the charge q
from infinity to the surface. From classical electrodynamics, we note
this energy as

V =
1
2

q2

C
(2)

where C is the capacity of the shell which can be derived from Gauss’
law as

C = 4πreε0 (3)

Now the potential energy is

V =
1
2

q2

4πε0re
(4)

We can think of this energy as the maximum amount of energy a
classical electron can have. Then, according to special relativity,

1
2

e2

4πε0re
< mec2 (5)

where me is the mass of the electron
(
9.11 × 10−31 kg

)
. We can now

deduce the lower bound of the radius as

re >
1

4πε0

e2

2mec2 = 1.4 × 10−15 m. (6)

Thus if an electron is thought of as a classical spherical shell with
uniform surface charge density, its radius must be equal to or larger
than 1.4 × 10−15 m. This value is larger than the latest experimen-
tal value of radius of a proton, which is about 0.87 × 10−15 m! Re-
peating the classical mechanical exercise for a proton, with mass
mp = 1836me results in the classical proton radius of 0.77 × 10−18 m
which clearly contradicts the widely recognized experimental value
of rp. In a future lecture, we will discuss more on rp and its connec-
tion to the Lamb shift of H-atom line spectrum. The radius of an
electron has not been determined experimentally so far. The present
understanding is that electrons are point masses, i.e. particles with
no spatial extent.

In quantum mechanics, we will not worry about the radius or
the volume of an electron. Instead, we will be concerned with the
probability to find an electron in a given region of space via proba-
bility amplitudes (i.e. wavefunctions) in various scenarios. To find
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the probability to find an electron in a region of dxdydz around a
position vector r⃗ = (x, y, z) , we will evaluate

|ψ (⃗r) |2dxdydz (7)

and denote |ψ (⃗r) |2 as the probability density. We will also see that
the total probability to find the electron should be 1∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

−∞
dz |ψ (⃗r) |2 = 1 (8)

What will be the speed of the equatorial region of an electron if it is a clas-
sically spinning sphere?

If the spin s⃗, of the electron is treated as classical spin, i.e., as me-
chanical angular momentum (⃗L), the magnitude of spin is given by

|⃗s| = L = Iω (9)

where I is the moment of inertia of the spherical shell, I = (2/3)mer2
e .

Note, for a solid sphere I = (2/5)mer2
e . The speed at the equator

(where the speed is maximum) of this classically spinning sphere can
be calculated using the relation vequator = reω.

|⃗s| = 2
3

mer2
e

vequator

re
(10)

⇒vequator =
3
2

|⃗s|
mere

(11)

We can use the value |⃗s| =
√

s (s + 1)h̄ with s = 1/2 to get vequator =

1074 × 108 m/s = 358c . This value is over two orders of magnitude
larger than the speed of light, hence violating the special theory of
relativity!

Later we will see that the spin of an electron is a quantum me-
chanical quantity, and there is no classical mechanical dynamical
quantity that can be used to make an analogy. For the purpose of this
course, and in most non-relativistic problems, we will find that the
wavefunction of a fermion can be expressed as a product of a spatial
wavefunction depending on the spatial coordinate (⃗r) of the fermion,
and a spin wavefunction depending on the hitherto unknown spin
variable, usually denoted by ω.

ψ (⃗r, ω) = ϕ (⃗r) χ (ω) (12)

The variable ω can take only discrete values in quantum mechan-
ics. For a fermion with spin s the variable ω can take 2s + 1 values
−s,−s + 1, . . . , s − 1, s. Hence for an electron with s = 1/2, ω can take
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only two values −1/2 and 1/2. We will introduce two spin functions,
α (ω) and β (ω) corresponding to spin up and spin down, respec-
tively. The functions α and β form an orthonormal basis and satisfy
the relations ∫

dω α† (ω) α (ω) =
∫

dω β† (ω) β (ω) = 1 (13)

and ∫
dω α† (ω) β (ω) =

∫
dω β† (ω) α (ω) = 0 (14)

Along with these relations, the wavefunction should satisfy the an-
tisymmetry principle: A many electron wavefunction must be an-
tisymmetric with respect to the interchange of the spatial and spin
coordinates of any two electrons. More on this, later.


