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Linear vector space and Hilbert space

In quantum mechanics, we encounter kets that represent the state of
a system. A ket is an abstract entity denoted by the symbol |·⟩. In-
side the symbol, one can include any information that corresponds
uniquely to the state of the system. Typically, one mentions the eigen-
value of an observable (as in |Z+⟩, where Z+ implies that in this
state, the value of the observable Sz is +h̄/2) or a quantum number
(as in |n⟩, seen in the particle in a box or harmonic oscillator prob-
lem).

Even though the ket is an abstract quantity, one can form a vector
space (denoted by V), where each element is a ket. In order to define
such a vector space, it should be possible to define the following two
binary operations:

1. a rule for addition of kets so that for any two kets, |1⟩ and |2⟩

|1⟩+ |2⟩ ∈ V; if |1⟩, |2⟩ ∈ V

2. a rule for scalar multiplication of a ket by a number c

c|1⟩ ∈ V; if |1⟩ ∈ V

It is important to note that the operations defined above (ket addition
and scalar multiplication) do not mean that the corresponding states
add up, get multiplied, or anything like that. We could have chosen
different symbols for addition and multiplication too. Individually,
these two binary operations are not physically relevant, but when
they are combined, one can define a linear superposition of kets that
can correspond to a physical state of the system. So, properties (1)
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and (2) are prerequisites to define a superposition of kets.

|α⟩ =
N

∑
k=1

ck|k⟩.

Since a linear combination of basis kets, |1⟩ . . . |N⟩, is defined in the
same space that contains the basis, we will call our vector space, V,
as linear vector space. From our knowledge of vector algebra, we
already know that for a superposition to be meaningful (i.e. devoid of
redundancy), the basis kets should be linearly independent.

In vector algebra, our basis kets are the three orthogonal unit
vectors in real space. In mathematical terms, the three-dimensional
vector space is defined over the real number field, R. For application
in quantum mechanics, we need the linear vector space to be of ar-
bitrary dimension, i.e. N can be any integer, even much greater than
3. Further, we will also assume that the linear expansion coefficients,
ck, are complex numbers. With these two assumptions we can call
the linear vector space as the Hilbert space (or the ket space). So, a
Hilbert space is an N-dimensional linear vector space defined over
the complex number field, C. In some text books a Hilbert space may
be denoted by the symbol H or CN .

Hilbert space axioms

For any three kets, |1⟩, |2⟩, and |3⟩, in H, and two complex numbers,
c1 and c2, the following axioms are defined

1. Both the binary operations defined above are commutative

|1⟩+ |2⟩ = |2⟩+ |1⟩
c|k⟩ = |k⟩c

2. Addition of kets is associative

|1⟩+ (|2⟩+ |3⟩) = (|1⟩+ |2⟩) + |3⟩

3. Scalar multiplication is distributive over addition of kets

c (|1⟩+ |2⟩) = c|1⟩+ c|2⟩

4. Scalar multiplication is distributive over addition of scalars

(c1 + c2) |k⟩ = c1|k⟩+ c2|k⟩

5. Scalar multiplication is associative in multiplication of scalars

c1 (c2|k⟩) = (c1c2) |k⟩
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6. There is an identity element (zero ket or null ket, |null⟩) for addi-
tion of kets (which is the first binary operation required to define a
vector space).

|k⟩+ |null⟩ = |k⟩; ∀|k⟩ ∈ H

The symbol ∀ stands for for all and the symbol ∈ stands for in or
belongs to.

7. Every ket in H has its own inverse ket in H with respect to ad-
dition. The sum of a ket and its inverse gives the null ket (the
identity element with respect to ket addition).

|k⟩+ (−|k⟩) = |null⟩; ∀|k⟩ ∈ H

8. There is an identity element for scalar multiplication (the second
binary operation required to define a vector space). This means
that the there is a scalar c = 1 so that

1|k⟩ = |k⟩; ∀|k⟩ ∈ H

An important point to note is that there is no equivalent of Axiom-
2 for the identity element for scalar multiplication. What this
means is that for every ket, there is no inverse ket so that the
identity element for scalar multiplication 1 can be obtained. To
define such an operation, we have to define the Hermitian adjoint
of a ket, |k⟩, called a bra, denoted by ⟨k|. For a Hilbert space, H,
one can define its dual, H†, by considering a dual of every ket, |k⟩,
in H denoted by the symbol bra, ⟨k|. The dual of the ket c|k⟩ is
(c|k⟩)† = (|k⟩)† (c)† = ⟨k|c∗ = c∗⟨k|.

Using a ket and its dual, we can define other types of products en-
countered in quantum mechanics.

Inner product

The field of the Hilbert space is the complex field, there each element
is a complex number that can be defined as an inner product of a ket
and a dual (of the same ket or a different ket) denoted by the symbol
⟨j|k⟩. Some of the properties of an inner product are as follows

1. Inner product is skew-symmetric.

⟨j|k⟩∗ = ⟨k|j⟩

2. Inner product is positive semi-definite

⟨j|k⟩ ≥ 0
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If ⟨j|k⟩ = 0, then we say that the kets |j⟩ and |k⟩ are orthogonal or
linearly indepedent.

3. Inner product is linear

⟨i| (c1|j⟩+ c2|k⟩) = c1⟨i|j⟩+ c2⟨i|k⟩

The norm of a ket is a real number defined in terms of its inner prod-
uct

Norm (|k⟩) =
√
⟨k|k⟩

When the norm of a ket is 1, we call the ket a normalized ket. In
general, it is always possible to normalize a ket by dividing it by its
norm.

⟨k|√
⟨k|k⟩

|k⟩√
⟨k|k⟩

= 1

Outer product and its relation to operators

Suppose we change the order in which the ket and the bra appear in
the inner product, we get an outer product, |j⟩⟨k|, which is no longer
a scalar.

We can see that an outer product is an operator that when acted on
a ket changes it to another ket.

(|j⟩⟨k|) |i⟩ = |j⟩⟨k|i⟩ = |j⟩c = c|j⟩

What’s going on is that, an outer product acting on a ket scales the
ket part of the outer product. While |j⟩⟨k| acting on |i⟩ has resulted
in a multiple of |j⟩, we cannot be sure if all components of |i⟩ along
|j⟩ is captured by the scalar c = ⟨k|i⟩.

Using this example, we can understand the effect of acting an
operator on a ket. An operator acting on a ket gives another ket.

Ô|i⟩ = |j⟩

A special class of outer product is when both the bra and the ket
parts are dual pairs. Such an outer product is called the projection
operator of the ket.

P̂|j⟩ = |j⟩⟨j|

When this operator acts on |i⟩, we get P̂|j⟩|i⟩ = |j⟩⟨j|i⟩ = c|j⟩, where c
is the projection |i⟩ along |j⟩.
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Properties of operators

Just like a ket spaces, it is possible to define operator spaces. How-
ever, for this course, it is not important to go to that level of math-
ematical abstraction. It is worthwhile to note down a few essential
properties of operators.

1. If an operator acting on a ket results in zero times another ket, we
call the operator a null operator

Ô|k⟩ = 0|j⟩ = 0 ⇒ Ô = null operator

2. In general, sequential actions of two operators (i.e. their multipli-
cation) on a ket is not commutative

ÂB̂|k⟩ ̸= B̂Â|k⟩

In short, we say that operator multiplication is not commutative
ÂB̂ ̸= B̂Â.

3. In general, sequential actions of three operators on a ket is associa-
tive

ÂB̂Ĉ|k⟩ = Â
(

B̂Ĉ
)
|k⟩ =

(
ÂB̂
)

Ĉ|k⟩

In short, we say that operator multiplication is associative.

4. There is an interesting property of operators that arises because of
the duality between the ket space and the bra space.

|i⟩ = ÂB̂|k⟩ ⇒ ⟨i| =
(

ÂB̂|k⟩
)†

= ⟨k|B̂† Â†

In short, we say
(

ÂB̂
)†

= B̂† Â†.

Completeness relationship

Completeness relationship is a very useful relationship that enables
transformation of expressions from one representation to another.
Suppose, |1⟩, . . . , |N⟩ form a complete set of linearly independent
kets, then the sum of all their projection operators corresponds to the
identity operator.

N

∑
k=1

|k⟩⟨k| =
N

∑
k=1

P̂k = Î



notes on selected topics to accompany sakurai’s “modern quantum mechanics” 6

As an example of the application of the completeness relation, let see
how we can use it to derive

(
ÂB̂
)†

= B̂† Â†.

⟨α|
(

ÂB̂
)† |β⟩ = ⟨β|ÂB̂|α⟩†

= ⟨β|ÂÎ B̂|α⟩†

=

(
⟨β|Â

N

∑
k=1

|k⟩⟨k|B̂|α⟩
)†

=

(
N

∑
k=1

⟨β|Â|k⟩⟨k|B̂|α⟩
)†

=
N

∑
k=1

⟨β|Â|k⟩†⟨k|B̂|α⟩†

=
N

∑
k=1

⟨k|Â†|β⟩⟨α|B̂†|k⟩

=
N

∑
k=1

⟨α|B̂†|k⟩⟨k|Â†|β⟩

= ⟨α|B̂†
N

∑
k=1

|k⟩⟨k|Â†|β⟩

= ⟨α|B̂† Î Â†|β⟩
= ⟨α|B̂† Â†|β⟩


