Notes on Selected topics to accompany Sakurai's "Modern Quantum Mechanics"

Raghunathan Ramakrishnan

ramakrishnan@tifrh.res.in

Prepared for the course QMi for Physicists at
Tata Institute of Fundamental Research Hyderabad Hyderabad 500046, India

Canonical Transformation

Suppose the state of a classical system is defined by the phase space coordinates $\left\{q_{a}, p_{a}\right\} ; a=1,2, \ldots, N$. These coordinates satisfy the Hamilton's equations of motions

$$
\dot{q}_{a}=\frac{\partial H}{\partial p_{a}}, \dot{p}_{a}=-\frac{\partial H}{\partial q_{a}} ; a=1,2, \ldots, N
$$

These equations can be derived using the variational method by solving

$$
\delta \int_{t_{1}}^{t_{2}} d t\left[\sum_{a} p_{a} \dot{q}_{a}-H(q, p, t)\right]=0
$$

Hamiltonian is defined as

$$
H=\sum_{a} \frac{p_{a}^{2}}{2 m_{a}}+V\left(q_{a}\right)
$$

A canonical transformation is a mapping of the $2 N$ variables $\left\{q_{a}, p_{a}\right\}$ to a different set of variables $\left\{Q_{a}, P_{a}\right\}$ for which there is another set of equations of motion which involves a different Hamiltonian H^{\prime}

$$
\dot{Q}_{a}=\frac{\partial H^{\prime}}{\partial P_{a}}, \dot{P}_{a}=-\frac{\partial H^{\prime}}{\partial P_{a}} ; a=1,2, \ldots, N
$$

These equations can also be derived using the variational method by solving

$$
\delta \int_{t_{1}}^{t_{2}} d t\left[\sum_{a} P_{a} \dot{Q}_{a}-H^{\prime}(Q, P, t)\right]=0
$$

From both variational equations, we have
$\delta \int_{t_{1}}^{t_{2}} d t\left[\sum_{a} p_{a} \dot{q}_{a}-H(q, p, t)\right]=\delta \int_{t_{1}}^{t_{2}} d t\left[\sum_{a} P_{a} \dot{Q}_{a}-H^{\prime}(Q, P, t)\right]$.
For this equation to hold, we must have

$$
\sum_{a} p_{a} \dot{q}_{a}-H(q, p, t)=\sum_{a} P_{a} \dot{Q}_{a}-H^{\prime}(Q, P, t)+\frac{d F}{d t}
$$

where F is called as the generation function of that canonical transformation. The generating function is defined by

$$
\begin{align*}
\frac{d F}{d t} & =\sum_{a}\left(p_{a} \dot{q}_{a}-P_{a} \dot{Q}_{a}\right)+\left(H^{\prime}(Q, P, t)-H(q, p, t)\right) \\
d F & =\sum_{a}\left(p_{a} \dot{q}_{a}-P_{a} \dot{Q}_{a}\right) d t+\left(H^{\prime}(Q, P, t)-H(q, p, t)\right) d t \\
d F & =\sum_{a}\left(p_{a} d q_{a}-P_{a} d Q_{a}\right)+\left(H^{\prime}-H\right) d t \tag{1}
\end{align*}
$$

Type-1 canonical transformation

We can expand $d F$ as an exact differential if F depends on old positions, new positions, and time $\left\{q_{a}, Q_{a}, t\right\}$.

$$
\begin{equation*}
d F_{1}=\sum_{a=1}\left(\frac{\partial F_{1}}{\partial q_{a}} d q_{a}+\frac{\partial F_{1}}{\partial Q_{a}} d Q_{a}\right)+\frac{\partial F_{1}}{\partial t} d t \tag{2}
\end{equation*}
$$

Comparing Eq.(1) and Eq.(2), we find that

$$
\begin{equation*}
p_{a}=\frac{\partial F_{1}}{\partial q_{a}}, \quad P_{a}=-\frac{\partial F_{1}}{\partial Q_{a}}, \quad H^{\prime}=H+\frac{\partial F_{1}}{\partial t} . \tag{3}
\end{equation*}
$$

Type-2 canonical transformation

Let's rearrange Eq.(1), using $P_{a} d Q_{a}=d\left(P_{a} Q_{a}\right)-Q_{a} d P_{a}$ as

$$
\begin{align*}
d F_{1} & =\sum_{a}\left(p_{a} d q_{a}-d\left(P_{a} Q_{a}\right)+Q_{a} d P_{a}\right)+\left(H^{\prime}-H\right) d t \\
d F_{1}+d \sum_{a}\left(P_{a} Q_{a}\right) & =\sum_{a}\left(p_{a} d q_{a}+Q_{a} d P_{a}\right)+\left(H^{\prime}-H\right) d t \\
d F_{2} & =\sum_{a}\left(p_{a} d q_{a}+Q_{a} d P_{a}\right)+\left(H^{\prime}-H\right) d t \tag{4}
\end{align*}
$$

From this, we have F_{2} to be a function of old positions, new momenta, and time $\left\{q_{a}, P_{a}, t\right\}$.

$$
\begin{equation*}
p_{a}=\frac{\partial F_{2}}{\partial q_{a}}, \quad Q_{a}=\frac{\partial F_{2}}{\partial P_{a}}, \quad H^{\prime}=H+\frac{\partial F_{2}}{\partial t} . \tag{5}
\end{equation*}
$$

Similarly, one can write down expressions for Type-3 (using variables $\left\{p_{a}, Q_{a}\right\}$) and Type-4 (using variables $\left\{p_{a}, P_{a}\right\}$) canonical transformations.

Identity transformation

As a special case of Type-2 canonical transformation, consider the identity transformation $q_{a}=Q_{a}$ and $p_{a}=P_{a}$, where the generating function (generator) is defined as $F_{2}=\sum_{a} P_{a} q_{a}=I$.

Infinitesimal Translation as a canonical transformation

Suppose the system is a single particle with phase-space coordinates $q, p=x, p$. After infinitesimal translation, the new coordinates are $Q, P=x+d x, p$. Since the momentum remains the same, we will have same Hamiltonian before and after translation, $H^{\prime}=H$. For the infinitesimal translation to be a Type-2 canonical transformation, according to Eq.(5), we should have

$$
p=\frac{\partial F_{2}}{\partial x}, \quad x+d x=\frac{\partial F_{2}}{\partial p}
$$

For this to hold, F_{2} should be defined as

$$
\begin{equation*}
F_{2}=(x+d x) p \tag{6}
\end{equation*}
$$

Note that $d x$ is a constant shift, so $\partial / \partial x(d x)=0$. Since $x p$ is the generating function of the identity transformation, we can write

$$
\begin{equation*}
F_{2}=I+p d x \tag{7}
\end{equation*}
$$

Relation to Quantum Mechanical Infinitesimal Translation

In Sakurai (1.6.4), we compare Eq.(7) to $\mathcal{T}\left(d x^{\prime}\right)=1-i K d x^{\prime}$, which is Eq.(1.202), on page-41, in Edition-3. The term $K d x^{\prime}$ should be dimensionless, so the dimension of K should be inverse of length, $[K]=L^{-1}$. We know that the dimension of momentum is given by $[p]=M L T^{-1}$, and using $E+\hbar \omega$, we get $[\hbar]=[E]\left[\omega^{-1}\right]$ or $[\hbar]=M L^{2} T^{-2} T$. So, we find $[p / \hbar]=L^{-1}$ having the same dimension as K. With all these information, Sakurai gives another perspective on the quantum mechanica infinitesimal translation operator as

$$
\begin{equation*}
\mathcal{T}\left(d x^{\prime}\right)=1-i \frac{p}{\hbar} d x^{\prime} \tag{8}
\end{equation*}
$$

