 Home
        
                
        Home Understanding the role of intramolecular ion-pair interactions in conformational stability using an ab initio thermodynamic cycle     
Sabyasachi Chakraborty, Kalyaneswar Mandal, Raghunathan Ramakrishnan   
Journal of Physical Chemistry B (2023) accepted.    
Supplementary Information: Raw I/O files, Jupyter notebooks
The Resolution-vs.-Accuracy Dilemma in Machine Learning Modeling of Electronic Excitation Spectra  
Prakriti Kayastha, Sabyasachi Chakraborty, Raghunathan Ramakrishnan 
Digital Discovery, 1 (2022) 689-702.  
bigQM7w dataset         
Raw input/output files on NOMAD 
Data-mining platform on Moldis 
Machine learning model
Data-Driven Modeling of S0 -> S1 Excitation Energy in the BODIPY Chemical Space: High-Throughput Computation, Quantum Machine Learning, and Inverse Design  
Amit Gupta, Sabyasachi Chakraborty, Debashree Ghosh, Raghunathan Ramakrishnan        
The Journal of Chemical Physics, 155 (2021) 244102.  
BODIPYs dataset          
Web-based QML model for querying on 253 Billion BODIPY molecules   
JCP Special Topic: Chemical Design by Artificial Intelligence
Machine Learning Modeling of Materials with a Group-Subgroup Structure     
Prakriti Kayastha, Raghunathan Ramakrishnan         
Machine Learning: Science and Technology, 2 (2021) 035035.               
FriezeRMQ1D dataset       
Raw input/output files on NOMAD
Troubleshooting Unstable Molecules in Chemical Space          
Salini Senthil, Sabyasachi Chakraborty, Raghunathan Ramakrishnan                 
Chemical Science 12 (2021) 5566.            
Features in 2021 Chemical Science Editor’s Choice   
Supplementary Information: PDF file             
ConnGO code               
Curated QM9 dataset
Revving up 13C NMR shielding predictions across chemical space: Benchmarks for atoms-in-molecules kernel machine learning with new data for 134 kilo molecules         
Amit Gupta, Sabyasachi Chakraborty, Raghunathan Ramakrishnan              
Machine Learning: Science and Technology, 2 (2021) 035010.  
Supplementary Information: PDF file
High-Throughput Design of Peierls and Charge Density Wave Phases in Q1D Organometallic Materials          
Prakriti Kayastha, Raghunathan Ramakrishnan               
The Journal of Chemical Physics, 154 (2021) 061102.           
Supplementary Information: PDF file                         
MolDis data-mining platform               
Raw input/output files on NOMAD       
JCP Special Topic: Computational Materials Discovery
Critical Benchmarking of the G4(MP2) Model, the Correlation Consistent Composite Approach and Popular Density Functional Approximations on a Probabilistically Pruned Benchmark Dataset of Formation Enthalpies                
Sambit Kumar Das, Sabyasachi Chakraborty, Raghunathan Ramakrishnan                  
The Journal of Chemical Physics, 154 (2021) 044113.                    
prunedHOF dataset
Quantum Interference in Real-Time Electron-Dynamics: Gaining Insights from Time-Dependent Configuration Interaction Simulations            
Raghunathan Ramakrishnan                 
The Journal of Chemical Physics, 152 (2020) 194111.
Quantum-chemistry-aided identification, synthesis and experimental validation of model systems for conformationally controlled reaction studies: separation of the conformers of 2,3-dibromobuta-1,3-diene in the gas phase           
Ardita Kilaj, Hong Gao, Diana Nikolaeva Tahchieva, Raghunathan Ramakrishnan, Daniel G Bachmann, Dennis Gillingham, Anatole von Lilienfeld, Jochen Küpper, Stefan Willitsch                  
Physical Chemistry Chemical Physics, 22 (2020) 13431-13439.
Machine learning modeling of Wigner intracule functionals for two electrons in one dimension                
Rutvij Vihang Bhavsar, Raghunathan Ramakrishnan          
The Journal of Chemical Physics,150 (2019) 144114.
The Chemical Space of B,N-substituted Polycyclic Aromatic Hydrocarbons: Combinatorial Enumeration and High-Throughput First-Principles Modeling                       
Sabyasachi Chakraborty, Prakriti Kayastha, Raghunathan Ramakrishnan                
The Journal of Chemical Physics,150 (2019) 114106. 
JCP Featured Article           
Features in 2019 JCP Editors’ Choice  
BNPAH dataset
Exact separation of radial and angular correlation energies in two-electron atoms              
Anjana R Kammath, Raghunathan Ramakrishnan                
Chemical Physics Letters, 720 (2019) 93–96.
Torsional potentials of glyoxal, oxalyl halides and their thiocarbonyl derivatives: Challenges for DFT   
Diana Tahchieva, Dirk Bakowies, Raghunathan Ramakrishnan, O. Anatole von Lilienfeld    
Journal of Chemical Theory and Computation, 14 (2018) 4806-4817.
Generalized DFTB repulsive potentials from unsupervised machine learning               
J. J. Kranz, M. Kubillus, Raghunathan Ramakrishnan, O. Anatole von Lilienfeld, M. Elstner         
Journal of Chemical Theory and Computation, 14 (2018) 2341-2352.
Genetic optimization of training sets for improved machine learning models of molecular properties    
Nicholas J. Browning, Raghunathan Ramakrishnan, O. Anatole von Lilienfeld, Ursula Röthlisberger       
Journal of Physical Chemistry Letters, 8 (2017) 1351-1359.
Machine learning, quantum mechanics, chemical compound space    
Raghunathan Ramakrishnan, O. Anatole von Lilienfeld       
Reviews in Computational Chemistry, Vol.30,  225-250 (2017).
Fast and accurate predictions of covalent bonds in chemical space            
K. Y. Samuel Chang, Stijn Fias, Raghunathan Ramakrishnan, O. Anatole von Lilienfeld          
The Journal of Chemical Physics, 144 (2016) 174110.
Electronic spectra from TDDFT and machine learning in chemical space          
Raghunathan Ramakrishnan, Mia Hartmann, Enrico Tapavicza, O. Anatole von Lilienfeld      
The Journal of Chemical Physics, 143 (2015) 084111.
Machine learning for quantum mechanical properties of atoms in molecules          
Matthias Rupp, Raghunathan Ramakrishnan, O. Anatole von Lilienfeld     
Journal of Physical Chemistry Letters, 6 (2015) 3309-3313.
Machine learning predictions of molecular properties: Accurate many-body potentials and non-locality in chemical space       
Katja Hansen, Franziska Biegler, Raghunathan Ramakrishnan, Wiktor Pronobis, O. Anatole von Lilienfeld, Klaus-Robert Müller, Alexandre Tkatchenko   
Journal of Physical Chemistry Letters, 6 (2015) 2326–2331.
Big data meets quantum chemistry approximations: The delta-machine learning approach          
Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, O. Anatole von Lilienfeld   
Journal of Chemical Theory and Computation, 11 (2015) 2087–2096.
Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior and approximations      
Raghunathan Ramakrishnan, Guntram Rauhut   
The Journal of Chemical Physics, 142 (2015) 154118.
Many molecular properties from one kernel in chemical space     
Raghunathan Ramakrishnan, O. Anatole von Lilienfeld    
Chimia, 69 (2015) 182-186.
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties          
O. Anatole von Lilienfeld, Raghunathan Ramakrishnan, Matthias Rupp, Aaron Knoll   
International Journal of Quantum Chemistry, 115 (2015) 1084-1093.
Charge transfer dynamics from adsorbates to surfaces with single active electron and configuration interaction based approaches         
Raghunathan Ramakrishnan, Mathias Nest   
Chemical Physics, 446 (2015) 24-29.
Quantum chemistry structures and properties of 134 kilo molecules         
Raghunathan Ramakrishnan, Pavlo Dral, Matthias Rupp, O. Anatole von Lilienfeld         
Scientific Data 1, Article number: 140022 (2014).
Vibrational energy levels of difluorodioxirane computed with variational and perturbative methods from a hybrid force field          
Raghunathan Ramakrishnan, Tucker Carrington, Jr.  
Spectrochimica Acta A, 119 (2014) 107–112.
Electron dynamics across molecular wires: A time-dependent configuration interaction study      
Raghunathan Ramakrishnan, Shampa Raghunathan, Mathias Nest    
Chemical Physics, 420 (2013) 44–49.
A simple Hückel molecular orbital plotter    
Raghunathan Ramakrishnan     
Journal of Chemical Education, 90 (2013) 132–133.
Control and analysis of single-determinant electron dynamics    
Raghunathan Ramakrishnan, Mathias Nest    
Physics Review A, 85 (2012) 054501.
Coherent control time-dependent methods for determining eigenvalues of Hermitian matrices with applications to electronic structure computations   
Raghunathan Ramakrishnan, Mathias Nest, Eli Pollak    
Molecular Physics, 110 (2012) 861–873.
Self-interaction artifacts on structural features of uranyl monohydroxide from Kohn-Sham calculations    
Raghunathan Ramakrishnan, Alexei V. Matveev, Sven Krüger, Notker Rösch    
Theoretical Chemistry Accounts, 130 (2011) 361–369.
Effects of the self-interaction error in Kohn-Sham calculations: A DFT + U case study on pentaaqua uranyl(VI)   
Raghunathan Ramakrishnan, Alexei V. Matveev, Notker Rösch   
Computational and Theoretical Chemistry, 963 (2011) 337–343.
The DFT + U method in the linear combination of Gaussian-type orbitals framework: Role of 4f orbitals in the bonding of LuF3
Raghunathan Ramakrishnan, Alexei V. Matveev, Notker Rösch    
Chemical Physics Letters, 468 (2009) 158–161.
Manifestation of diamagnetic chemical shifts of proton NMR signals by an anisotropic shielding effect of nitrate anions 
Himansu Sekhar Sahoo, Dillip Kumar Chand, S. Mahalakshmi, Md. Hedayetullah Mir, Raghunathan Ramakrishnan    
Tetrahedron letters, 48 (2007) 761–765.