A toolkit for ab initio thermochemistry
The Pople code is made openly available at https://github.com/moldis-group/pople_package with an MIT license. We welcome you to include it in your work. In return, we kindly ask you to cite the underlying entry in your work using Pople.
Sambit Kumar Das, Salini Senthil, Sabyasachi Chakraborty, Raghunathan Ramakrishnan (2021) “Pople: A toolkit for ab initio thermochemistry” https://moldis-group.github.io/pople/
@article{das2021pople,
title={Pople: A toolkit for ab initio thermochemistry},
author={Das, SK and Senthil, S and Chakraborty, S and Ramakrishnan, R},
journal={URL https://moldis-group.github.io/pople/},
year={2021}
}
The program is developed by the following members of the Theory Lab at the Tata Institute of Fundamental Research Hyderabad, India
The Journal of Physical Chemistry A, 112(50), pp.12868-12886
Critical benchmarking of the G4(MP2) model, the correlation consistent composite approach and popular density functional approximations on a probabilistically pruned benchmark dataset of formation enthalpies
Sambit K. Das, Sabyasachi Chakraborty, Raghunathan Ramakrishnan
J. Chem. Phys., 154 (2021) 044113.
All hands on deck: Accelerating ab initio thermochemistry via wavefunction approximations
Sambit K. Das, Salini Senthil, Sabyasachi Chakraborty, Raghunathan Ramakrishnan
submitted (2021).
Gaussian‐1 theory: A general procedure for prediction of molecular energies
John A. Pople, Martin Head‐Gordon, Douglas J. Fox, Krishnan Raghavachari and Larry A. Curtiss
J. Chem. Phys., 90 (1989) 5622
Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds
Larry A. Curtiss, Krishnan Raghavachari, Gary W. Trucks and John A. Pople
J. Chem. Phys., 94 (1991) 7221
Gaussian-2 theory using reduced Mo/ller–Plesset orders
Larry A. Curtiss, Krishnan Raghavachari and John A. Pople
J. Chem. Phys., 98 (1993) 1293
Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation
Larry A. Curtiss, Krishnan Raghavachari, Paul C. Redfern and John A. Pople
J. Chem. Phys., 106 (1997) 1063
Gaussian-3 (G3) theory for molecules containing first and second-row atoms
Larry A. Curtiss, Krishnan Raghavachari, Paul C. Redfern, Vitaly Rassolov and John A. Pople
J. Chem. Phys., 109 (1998) 7764The Journal of Physical Chemistry A, 112(50), pp.12868-12886
Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory
Jan M. L. Martin and Glênisson de Oliveira
J. Chem. Phys. 111, 1843 (1999)
Unrestricted Coupled Cluster and Brueckner Doubles Variations of W1 Theory
Ericka C. Barnes, George A. Petersson, John A. Montgomery, Jr.,Michael J. Frisch,and Jan M. L. Martin
J. Chem. Theory Comput. 2009, 5, 10, 2687–2693
Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics
Karton, Amir, Alex Tarnopolsky, Jean-Francois Lamére, George C. Schatz, and Jan ML Martin
J. Phys. Chem. A 2008, 112, 50, 12868–12886
W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data
Karton, Amir, Shauli Daon, and Jan ML Martin
Chemical Physics Letters 510, no. 4-6 (2011): 165-178
W4-17: A Diverse and High-Confidence Dataset of Atomization Energies for Benchmarking High-Level Electronic Structure Methods
Karton, Amir, Nitai Sylvetsky, and Jan ML Martin
Journal of Computational Chemistry 38.24 (2017): 2063-2075
BH9, a New Comprehensive Benchmark Data Set for Barrier Heights and Reaction Energies: Assessment of Density Functional Approximations and Basis Set Incompleteness Potentials
Viki Kumar Prasad, Zhipeng Pei, Simon Edelmann, Alberto Otero-de-la-Roza, and Gino A. DiLabio
J. Chem. Theory Comput. 2022, 18, 151−166
Tackling an accurate description of molecular reactivity with double-hybrid density functionals
Éric Brémond, Hanwei Li, Ángel José Pérez-Jiménez, Juan Carlos Sancho-García, and Carlo Adamo
J. Chem. Phys. 156, 161101 (2022)